СХЕМА УПРАВЛЕНИЯ АФ011В ДЛЯ ЭЛЕКТРОННО-СЧЕТНЫХ ЧАСТОТОМЕРОВ

O.B. Дворников, В.А. Чеховский oleg dvornikov@tut.by

В различной РЭА требуется с большой временной точностью зафиксировать момент поступления сигнала. Чаще всего для этого применяют дискриминаторы с постоянным порогом (ДПП), которые представляют собой компараторы напряжения с постоянным смещением (порогом переключения) одного из входов. При превышении входным сигналом порога выход компаратора переключается и сигнализирует о моменте поступления сигнала с амплитудой, превышающей порог. Для обеспечения высокой временной точности применяемые в ДПП компараторы должны иметь минимальную задержку переключения и слабую зависимость задержки от дифференциального входного напряжения. Для устранения ложных срабатываний в компараторы вводят гистерезис, который к сожалению, ограничивает минимальную амплитуду регистрируемых сигналов.

Главной задачей при разработке микросхемы AФ011B было создание универсального набора блоков, позволяющего при использовании минимального количества внешних элементов регистрировать с высокой точностью момент поступления сигнала в диапазоне частот от 10 Гц до 200 МГц.

Для решения поставленной задачи на АБМК_1_2 была реализована ИС, схема которой приведена на рис. 1.

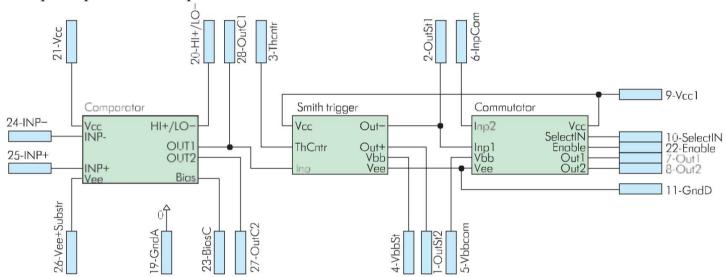


Рис. 1. Схема электрическая функциональная АФ011В

ИС состоит из быстродействующего компаратора, триггера Шмидта и двухканального коммутатора. Для обеспечения универсальности были применены следующие решения:

- Каждый из блоков имеет доступные выводы входов и выходов. Все блоки согласованы по уровню положительного ЭСЛ (ПЭСЛ) сигнала. Возможны различные схемы включения ИС: непосредственный съем ПЭСЛ сигнала с выхода компаратора (OutC1, OutC2) или триггера Шмидта (OutSt1, OutSt2); подача регистрируемого сигнала через разделительный конденсатор на вход триггера Шмидта при задании его смещения встроенным источником опорного напряжения VbbSt1; прямое соединение компаратора OutC2 с коммутатором InpCom.
 - Питание компаратора (VCC=5 B, VEE=-5 B, GndA=0) отделено от питания

остальной схемы (VCC1=5 B, GndD=0).

- B компараторе возможно изменение полярности выходного сигнала при подаче напряжения 0/5 B на вывод HI+/LO-.
- В триггере Шмидта установлен внутренний минимальный гистерезис \approx 40 мВ, который можно увеличить до \approx 300 мВ при включении внешнего резистора REXT2=100 Ом между выводами Thentr and OutSt1.
- Коммутатор позволяет выбирать нужный вход заданием потенциала 0/5 В на выводе SelectIN, а также включать или выключать коммутатор ПЭСЛ сигналом по выводу Enable.
- Выходной каскад коммутатора (повторитель напряжения с «оборванным» эмиттером) обеспечивает ПЭСЛ сигнал на нагрузке 300 Ом (Out1, Out2), соединенной с шиной нулевого потенциала.

Основой ИС является компаратор, который построен по классической схеме быстродействующих усилителей (рис. 2): преобразование входного напряжения в ток дифференциальным каскадом Q10, Q11; усиление тока каскадами Джильберта; обратное преобразование «ток — напряжение» на низкоомных резисторах R1, R6; передача усиленного напряжения на нагрузку Out1, Out2 через эмиттерные повторители Q1-1, Q1-2. Входные эмиттерные повторители Q9-1, Q9-2 уменьшают входной ток смещения и сдвигают потенциалы на базах Q10, Q11 для обеспечения симметричного диапазона допустимого входного сигнала ±1,1 В. Изменение разности потенциалов на базах Q2-Q3 приводит к изменению усиления и даже инверсии полярности. Для управления усилением используются эмиттерные повторители на транзисторах Q18, Q19, базовый потенциал которых определяется сопротивлением R24, R27 и величиной тока, переключаемой дифференциальным каскадом Q23-1, Q27-1.

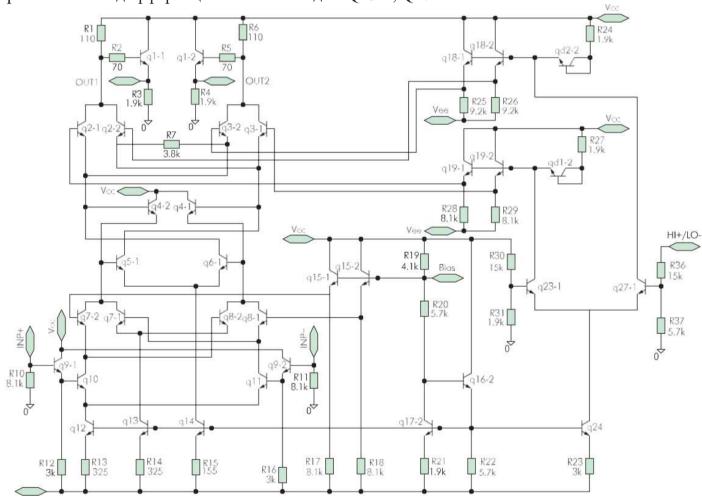


Рис. 2. Быстродействующий компаратор

Триггер Шмидта и выходной коммутатор используют традиционные схемотехнические решения ЭСЛ.

Основное назначение АФ011В — работа во входных каскадах электронно-счетных частотомеров, поэтому для ИС нормируются электропараметры, приведенные в таблице 1.

Таблица 1. Основные электропараметры АФ011В

Величина входных сигналов выбора входа коммутатора и инвертирования сигнала компаратора — логический «0» — логическая «1»	не более 0,2 В не менее 4,8 В
Величина входных сигналов включения-выключения коммутатора - логический «0» - логическая «1»	не более 3,3 В не менее 4,1 В
Величина выходных сигналов коммутатора при напряжении питания ±5 В и нагрузке 300 Ом, соединенной с нулевым потенциалом – логический ~0» – логическая «1»	от 3,1 В до 3,4 В от 4,0 В до 4,3 В
Минимальное входное напряжение синусоидальной формы в диапазоне частот от 10 Гц до 200 МГц	не более 30 мВ
Максимальное входное напряжение синусоидальной формы в диапазоне частот от 10 Гц до 200 МГц	не менее 1 В
Величина напряжения питания: положительное отрицательное	5±0,2 B -5±0,2 B
Ток потребления от положительного источника питания от отрицательного источника питания	не более 110 мА не более 35 мА

Быстродействие ИС было изучено с помощью двухканального широкополосного осциллографа 54830В Infiniium фирмы Hewlett-Packard. Только выходной каскад коммутатора может работать с 50-омной нагрузкой при применении дополнительного источника опорного напряжения, поэтому выходные сигналы всех основных блоков ИС регистрировались с помощью делителя 1:10 с входной емкостью 10 пФ и сопротивлением 10 МОм. При этом точность определения быстродействия была ограничена временем нарастания сигнала осциллографа, которое составляет $\approx 0,45$ нс для 50-омного входа осциллографа и $\approx 0,55$ нс при использовании делителя.

Типичные результаты измерений показаны в таблице 2 и на рис. 3–5.

Рис. 3. Сигналы в основных узлах при превышении порога на 100 мВ. V(INP—) — входной сигнал, V(OutC1), V(OutSt1), V(Out2) — выходной сигнал компаратора, триггера Шмидта и коммутатора соответственно. Масштаб: по горизонтали — 1 нс/дел., по вертикали для канала № 1 — 500 мВ/дел. V(OutC1), V(OutSt1), V(Out2), для канала № 2 — 50 мВ/дел. V(INP—)



Рис. 4. Выходной сигнал коммутатора V(Out2) при превышении порога на: А — 10 мВ, В — 100 мВ, С — 1 В. V(INP–) — входной сигнал. Масштаб: по горизонтали — 1 нс/дел., по вертикали для канала № 1 — 500 мВ/дел. V(Out2), для канала № 2 — 50 мВ/дел. V(INP–)

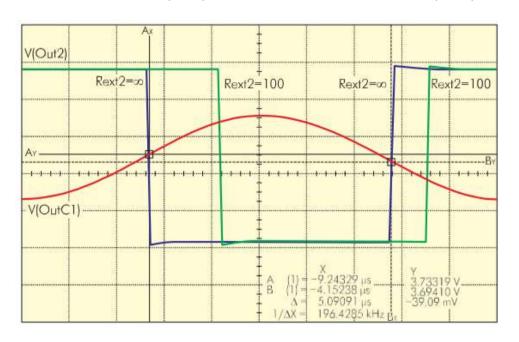


Рис. 5. Выходной сигнал коммутатора V(Out2) при минимальном REXT2 = 100 Ом и максимальном $REXT2 = \infty$ сопротивлении, устанавливающем порог триггера Шмидта. V(OutC1) — выходной сигнал компаратора. Маркеры A, B расположены на кривой, соответствующей $REXT2 = \infty$. Масштаб: по горизонтали — 1 мкс/дел., по вертикали — 500 мВ/дел.

Таблица 2. Результаты измерений быстродействия отдельных блоков ИС АФ011В при превышении порога на 100 мВ

Параметр	Выход компа- ратора	Выход триггера Шмидта	Выход коммута тора
Задержка, нс	1,20±0,05	3,55±0,05	4,0±0,05
Время нарастания выходного ПЭСЛ сигнала, нс	0,95±0,02	1,23±0,02	0,86±0,02

Зависимость задержки распространения τ_D от величины превышения порога (Vin-Vth) незначительна, так как при Vin-Vth = $100 \text{ MB} - \tau_D = 4,015 \text{ нc}$, а при Vin-Vth = $1000 \text{ MB} - \tau_D = 3,706 \text{ нc}$. Гистерезис триггера Шмидта изменяется внешним резистором от 39,1 MB до 307,2 MB.