Микроэлектронные преобразователи переменного напряжения в постоянное по уровню среднеквадратического значения Часть 1. Преобразователи

с экспоненциально-логарифмической обратной связью

Этот материал открывает цикл статей, в которых будут подробно рассмотрены существующие преобразователи переменного напряжения в постоянное по уровню среднеквадратического значения, выполненные в полупроводниковом и гибридном исполнении.

Олег Дворников

Oleg_Dvornikov@tut.by

Ватичной радиоэлектронной аппаратуре (РЭА) необходимо оценивать уровень переменного напряжения. Наиболее точно описывает сигнал сложной формы среднеквадратическое значение (СКЗ) напряжения, которое позволяет строго сравнивать действие сигналов различной формы: постоянных, периодических, коммутируемых периодических, случайных и пр.

Для определения СКЗ напряжения применяются преобразователи переменного напряжения в постоянное по уровню среднеквадратического значения (ПСКЗ). Предприятия-производители ИС выпускают небольшую номенклатуру ПСКЗ или блоков ПСКЗ, которые при микроэлектронном исполнении обеспечивают наилучшее отношение качество/цена, но не всегда удовлетворяют требованиям, предъявляемым к ним в РЭА.

Для правильного выбора микросхемы ПСКЗ, а также при разработке новых ПСКЗ необходимо ясно представлять как особенности параметров ИС, так и их внутреннюю структуру на уровне функциональных блоков, а в некоторых случаях — на уровне схемотехнических и топологических решений.

Основные положения

(3)

Любые электрические сигналы (напряжение, ток) $x(t)=X_p \times e(t)$ характеризуются [1] средним (mean) (для периодических сигналов — постоянная составляю щая) X_M , средневыпрямленным (half-period) X_{HP} , среднеквадратическим (root-mean-square) X_{RMS} и пиковым (peak) X_P значениями:

$$X_{M} = \frac{1}{t_{J+1} - t_{J}} \int_{t_{J}}^{t_{J+1}} x(t) dt$$
(1)
$$X_{HP} = \frac{1}{t_{J+1} - t_{J}} \int_{t_{J}}^{t_{J+1}} |x(t)| dt$$
(2)

$$X_{RMS} = \left(\frac{1}{t_{J+1} - t_J} \int_{t_J}^{t_{J+1}} x^2(t) dt\right)^{0.5}$$

$$X_p = \max | x(t) |, \qquad (4)$$
$$t \in (t_p, t_{l+1})$$

где *e*(*t*) — нормированная форма сигнала с единичной амплитудой, *t*_{*j*+1}-*t*_{*j*} — заданный интервал времени. Для периодических сигналов

я периодических сигналов

$$t_J = t_0 + jT, t_{J+1} = t_0 + (j+1)T$$
 (5)

где t_0 — некоторый фиксированный момент времени, *T* — период, j=0,1,2...

Для характеристики формы сигнала x(t) чаще всего применяют коэффициент формы (form factor) k_F и коэффициент амплитуды (peak factor, crest factor) k_P :

$$k_F = \frac{X_{RMS}}{X_{HP}} \tag{6}$$

$$k_P = \frac{X_P}{X_{RMS}} \tag{7}$$

Для синусоидальных сигналов

$$k_F = \frac{\pi}{2\sqrt{2}}, \ k_P = \sqrt{2} \tag{8}$$

а для однополярного прямоугольного импульса

$$k_P = \sqrt{\frac{T}{\tau_P}} \tag{9}$$

где τ_P — длительность импульса.

Параметры k_{P} , X_{RMS} наиболее распространенных импульсов приведены в специальной литературе [2]. Из выражения (3) для среднеквадратического значения напряжения V_{RMS} можно получить:

$$\frac{V_{RMS}^2}{R} (t_{J+1} - t_J) = \frac{1}{R} \int_{t_J}^{t_{J+1}} v^2(t) dt$$
(10)

или для периодического сигнала

$$\frac{V_{RMS}^2}{R}T = \frac{1}{R}\int_0^T v^2(t)dt$$
 (11)

Таблица 1. Основные электропараметры ПСКЗ с экспоненциально-логарифмической ОС

Наимено- вание ИС	Погрешность при 25 °C, мВ±%	Погрешность в зависимости от k _p , %	Полоса пропускания по уровню –3 дБ, кГц	Полоса частот для дополнительной 1%-й погрешности (0,09 дБ), кГц	Максимальный входной СКЗ-сигнал, В	
AD536AK, MX536AK	±2±0,2	-1 при k _P =7 V _{RMS} =1,0 В	90 при V _{RMS} =0,01 В	5 при V _{RMS} =0,01 В	- 7,0	
			2300 при V _{RMS} =1 В	120 при V _{RMS} =1 В		
AD637K	±0,5±0,2	±1 при k _p =10 V _{RMS} =1,0 B	150 при V _{RMS} =0,02 В	11 при V _{RMS} =0,02 В	- 7,0	
			8000 при V _{RMS} =2 В	200 при V _{RMS} =2 В		
AD636K, MX636K	±0,2±0,5	-0,5 при k _P =6 V _{RMS} =0,2 B	100 при V _{RMS} =0,01 В	14 при V _{RMS} =0,01 В	0.0	
			1500 при V _{RMS} =0,2 В	130 при V _{RMS} =0,2 В	0,2	
AD737K	±0,2±0,3	±2,5 при k _P =5 V _{RMS} =0,2 В	5 при V _{RMS} =0,001 В)1 В 1 при V _{RMS} =0,001 В		
			190 при V _{RMS} =0,2 В	33 при V _{RMS} =0,2 В	0,2	
AD736K	±0,3±0,3	±2,5 при k _P =5 V _{RMS} =0,2 B	5 при V _{RMS} =0,001 В	1 при V _{RMS} =0,001 В	1.0	
			190 при V _{RMS} =0,2 В	33 при V _{RMS} =0,2 В] ',0	

Таблица 2. Электропараметры буферного усилителя микросхем ПСКЗ

Наимено- вание ИС	Напряжение смещения, мВ	Входной ток смещения, нА	Выходной ток, мА	Полоса пропускания по уровню –3 дБ, МГц	Скорость нарастания выходного напряжения, В/мкс
AD536AK, MX536AK	±4,0	60,0	+5,0 -0,13	1,0	5,0 с внешним резистором 2 кОм
AD637K	±1,0	±5,0	+5,0 -0,13	1,0	5,0 с внешним резистором 2 кОм
AD636K, MX636K	±1,0	300,0	+5,0 -0,13	1,0	5,0 с внешним резистором 10 кОм

где v(t) — напряжение переменного тока, падающее на резисторе R.

Соотношение (10) поясняет физическую сущность СКЗ напряжения переменного тока, которое определяется как напряжение постоянного тока, необходимое для передачи за определенный промежуток времени $(t_{j+1}-t_j)$ на нагрузку *R* такого количества энергии $P \times (t_{j+1}-t_j)$, которое передает данный сигнал v(t) за указанное время. СКЗ напряжения является единственным способом описания мощности *P* электрического сигнала.

Для синусоидальных сигналов V_{RMS} можно легко определить по средневыпрямленному значению V_{HP} с учетом коэффициента формы:

$$V_{RMS} = k_F V_{HP} = \frac{\pi}{2\sqrt{2}} V_{HP}$$
 (12)

Такой способ применяется в радиоизмерительных приборах (РИП), работающих с синусоидальными сигналами [3]. Однако во многих электронных цепях сигнал значительно отличается от синусоидального, например коммутируемый синусоидальный сигнал, сигнал на тиристорах, синусоидальный сигнал, сигнал на тиристорах, синусоидальный сигнал с большим количеством гармоник, специальные виды сигналов, применяемые при передаче данных. В этих случаях оценка СКЗ по средневыпрямленному значению приводит к недопустимо большим погрешностям [4–5].

Для точного определения СКЗ напряжения переменного тока применяются преобразователи переменного напряжения в постоянное по уровню среднеквадратического значения (ПСКЗ или True RMS-to-DC converter), статическая функция преобразования которых определяется квазилинейной зависимостью выходного напряжения постоянного тока V_{OUTDC} от входного [1]:

$$V_{OUTDC} = SV_{RMS} + \Delta V \tag{13}$$

где $S=S_0(1+\gamma)$ — коэффициент передачи ПСКЗ по уровню среднеквадратического значения, γ — мультипликативная погрешность, обус-

ловленная отклонением значения коэффициента передачи S от требуемого значения S_{o} ΔV — аддитивная погрешность.

Нелинейная функция преобразования ПСКЗ учитывается в зависимости $\gamma = \gamma(V_{RMS})$.

Значительное влияние ПСКЗ на характеристики современной РЭА объясняет большое количество публикаций по вопросам проектирования ПСКЗ, среди которых следует выделить основные работы [1–2, 6–8].

Функциональные схемы и основные электрические параметры микросхем ПСКЗ [9]

Большинство серийно выпускаемых полупроводниковых ПСКЗ имеют экспоненциально-логарифмическую обратную связь. Их основные характеристики приведены в таблицах 1–2.

Приведенные в таблице 1 микросхемы можно условно разделить на малопотребляющие с высокоомным входом (AD736, AD737) и прецизионные (AD536, AD636, AD637).

Функциональная схема и типовая схема включения самого экономичного ПСКЗ (AD737) показана на рис. 1 и 2 соответственно.

ИС AD737 включает: входной усилитель (input amplifier) с входными полевыми транзисторами, управляемыми p-n-переходом (ПТУП), обеспечивающими сопротивление по входу V_{IN} около 10¹² Ом; двухполупериодный выпрямитель (full-wave rectifier); блок смещения (bias section) и блок выделения СКЗ (RMS core). Для максимального уменьшения тока потребления в блоке смещения предусмотрен режим выключения питания управляющим сигналом (power down) и в микросхеме отсутствует выходной буферный усилитель, поэтому ИС может работать только на высокоомную нагрузку. При подаче на вывод «power down» положительного напряжения питания + V_S ток потребления ИС уменьшается от 160 до 40 мкА. В микросхеме имеется дополнительный низкоомный вход С_с с входным сопротивлением ≈8 кОм. Низкоомный вход позволяет обрабатывать сигнал со СКЗ напряжения до 300 мВ при минимальном напряжении питания +2,8 В и -3,2 В и до 1 В при напряжении питания в диапазоне от ± 5 В до $\pm 16,5$ В. Входы $V_{\rm IN}$ и $C_{\rm C}$ могут использоваться как отдельно, так и дифференциально.

Основным преимуществом функциональной схемы (рис. 1) является подключение усредняющего конденсатора (averaging capacitor) C_{AV} параллельно прямосмещенному диоду в блоке вычисления СКЗ. В этом случае постоянная времени усреднения (averaging time constant) составит

$$\tau_{AV} \approx C_{AV} \times r_D = C_{AV} \times \varphi_T / I_D \qquad (14)$$

где r_D — дифференциальное сопротивление прямосмещенного диода, ϕ_T — температурный потенциал, I_D — ток через прямосмещенный диод.

Постоянная времени усреднения определяет точность преобразования СКЗ, особенно в низкочастотной области. Так как ток через диод прямо пропорционален уровню выход-

ного сигнала выпрямителя, τ_{AV} будет увеличиваться при уменьшении уровня входного сигнала ПСКЗ, при этом погрешность преобразования из-за неидеальности усреднения будет уменьшаться. Таким образом, при малых входных уровнях ПСКЗ имеет меньшие погрешности преобразования низкочастотного сигнала, но требует большего времени между измерениями. Увеличить точность преобразования, особенно низкочастотного сигнала, без увеличения времени установления выходного напряжения можно при применении дополнительной фильтрации конденсаторами *C*_{*C*} и *C*_{*F*}, как показано на рис. 2. Следует учитывать, что конденсатор C_C совместно с внутренним резистором величиной 8 кОм определяет частоту среза по уровню -3 дБ в области низких частот f_{-3dBL} :

$$f_{-3dBL} = \frac{1}{2\pi C_C 8\kappa OM} \tag{15}$$

На частоте f_{-3dBL} погрешность преобразования составляет 30%, что недопустимо для большинства применений, поэтому C_C лучше выбирать для частоты, на которой ПСКЗ имеет дополнительную погрешность 1% в области низких частот $f_{-1\%L}$:

$$f_{-1\%L} = \frac{10}{\sqrt{2}} f_{-3dBL}$$
(16)

Необходимо заметить, что включение конденсаторов C_C и C_F указано изготовителем ИС как необязательное (optional), но погрешность преобразования нормируется при наличии C_C и C_F .

Микросхема AD736 отличается от AD737 только наличием выходного буферного усилителя и отсутствием режима выключения питания.

Прецизионные ПСКЗ (AD536, AD636, AD637) имеют почти одинаковую внутреннюю структуру. Например, функциональная схема AD636, показанная на рис. 3, полностью аналогична AD536 и отличается только номиналами резисторов.

ПСКЗ содержит:

- Преобразователь абсолютного значения напряжения в ток (absolute value voltage-current converter) на операционных усилителях A1, A2 и двухэмиттерном n-p-n-транзисторе.
- Одноквадрантный квадратор-делитель (onequadrant squarer-divider) на n-p-n-транзисторах Q1-Q4 и усилителе тока А3.
- Повторитель тока «токовое зеркало» (current mirror) на p-n-p-транзисторах для выравнивания коллекторных токов Q3, Q4 и обеспечения выходного тока по выводу I_{OUT} если вывод R_L не соединен. Если вывод R_L соединен с нулевым потенциалом, то I_{OUT} будет высокоомным выходом ПСКЗ.
- Фильтр нижних частот, образованный внутренним резистором R₁=25 кОм и внешним усредняющим конденсатором, соединенным между выводом C_{AV} и положительным питанием.
- Буферный усилитель (buffer) с отдельным входом BUF_IN и выходом BUF_OUT.

Ток

 Транзистор Q5 типа p-n-р для получения напряжения по выводу dB_OUT в логарифмическом масштабе (в дБ).

Рассмотрим работу ПСКЗ для типовой схемы включения (рис. 4).

Для транзисторов Q1–Q4 квадратора-делителя справедливо

$$V_{BE1} + V_{BE2} = V_{BE4} + V_{BE3}$$
(17)

$$m\phi_T Ln \frac{I_{C1}}{I_{ES1}} + m\phi_T Ln \frac{I_{C2}}{I_{ES2}} =$$
$$= m\phi_T Ln \frac{I_{C3}}{I_{ES3}} + m\phi_T Ln \frac{I_{C4}}{I_{ES4}} \quad (18)$$

де
$$V_{BEI} = m \varphi_T L n \frac{I_{CI}}{I_{ESI}}$$
 —

V

падение напряжения на прямосмещенном эмиттерном переходе i-того транзистора, *m* — фактор, описывающий отклонение вольтамперной характеристики (BAX) p-n-перехода от экспоненты, *I*_{CI} — коллекторный ток i-того транзистора, *I*_{ESI} — обратный ток насыщения эмиттерного перехода i-того транзистора.

Если транзисторы Q1-Q4 имеют идентичные параметры $I_{ES1}=I_{ES2}=I_{ES3}=I_{ES4}$ и коэффициент передачи тока в схеме с общим эмиттером β п-р-п и р-п-р-транзисторов настолько велик, что можно пренебречь базовыми токами, то из (18) получим:

$$I_1^2 = I_3 \times I_4$$
(19)
$$I_1 \approx \frac{|V_{IN}|}{R_4}$$

представляет собой однополярный выходной ток активного выпрямителя-преобразователя A1, A2, а ток I_4 протекает через фильтр нижних частот R_1C_{AV} . Если постоянная времени усреднения фильтра $\tau_{AV} \approx R_1C_{AV}$ намного больше, чем период входного сигнала, то ток I_4 эффективно усредняется фильтром и его среднее значение $AvgI_4$ точно передается повторителем тока в коллектор транзистора Q3 $I_3 = AvgI_4$ и с удвоенным значением, определяемым отношением эмиттерных площадей транзисторов, — на выход ПСКЗ $I_{R2} = 2AvgI_4$.

Таким образом,

$$V_{OUT} = I_{R2}R_2 = 2R_2AvgI_4 = 2R_2\sqrt{Avg\frac{V_{IN}^2}{R_4^2}} = \frac{2R_2}{R_4}\sqrt{AvgV_{IN}^2} = \frac{2R_2}{R_4}V_{INRMS}$$
 (20)

где I_{R2} — ток, протекающий через резистор R_2 . При выводе (20) учитывалось, что

$$Avg(I_1^2) = Avg(I_3 \times I_4) = AvgI_4 \times AvgI_4$$
 (21)

Для резисторов, указанных на рис. 3,

$$V_{OUT} = V_{INRMS}$$
(22)

Выход ПСКЗ в дБ осуществляется с эмиттера транзистора Q3, так как напряжение в этом узле логарифмически зависит от выходного тока. Транзистор Q5 является эмиттерным повторителем, который исключает влияние нагрузки, соединенной с выводом dB_OUT, на напряжение внутри ПСКЗ и обеспечивает нулевое выходное напряжение V(dB_OUT) \approx 0 при внешнем опорном токе $I_{REF} \approx I_3$.

Как указывалось ранее, увеличение усредняющего конденсатора C_{AV} значительно уменьшает пульсации выходного напряжения ПСКЗ, но увеличивает время установления. В ИС AD536/AD636 пульсации выходного напряжения можно существенно уменьшить, если выполнить дополнительную фильтрацию при помощи внутреннего буфера и внешнего

конденсатора (C_F на рис. 4). Кроме того, включение буфера позволяет работать на низкоомную нагрузку и реализовать внешнюю настройку напряжения смещения нуля ПСКЗ при соединении вывода R_L не с нулевым, а с небольшим регулируемым напряжением.

Заметим, что приведенная в таблице 1 погрешность преобразования и полоса пропускания нормируются на высокоомном выходе ПСКЗ I_{OUT}.

Функциональная схема и типовая схема включения наиболее точного ПСКЗ (AD637) показаны на рис. 5 и 6 соответственно.

Главные отличия AD637 от AD636 заключаются в следующем:

- Фильтр нижних частот реализован не на повторителе тока, а на ОУ А4, поэтому ИС AD637 по выходу RMS_OUT способна обеспечивать СКЗ напряжения на низкоомной нагрузке. Встроенный буферный усилитель А5 можно применять для увеличения входного сопротивления по входу V_{IN} или для дополнительной фильтрации напряжения по выходу RMS_OUT в отличие от AD636, где встроенный буферный усилитель всегда используется при работе на низкоомную нагрузку.
- Выравнивание коллекторных токов Q3 и Q4 выполняется дополнительным усилителем A3, что увеличивает точность преобразования в широком диапазоне входного напряжения, так как исключает присущую AD636 нелинейность передаточной характеристики повторителя тока из-за сильной зависимости β от коллекторного тока и падения напряжения на объемных сопротивлениях транзисторов.

 Блок смещения (bias) имеет вывод CS для выключения питания управляющим сигналом. Если напряжение на этом выводе менее 0,2 В, то ток потребления ИС уменьшается от 3,0 мА до 450 мкА.

Все микросхемы — AD536, AD636, AD637 — имеют схему уменьшения погрешности преобразования сигналов с большим коэффициентом амплитуды (crest factor compensation scheme) и лазерную подстройку на пластине следующих параметров: напряжения смещения операционных усилителей, коэффициента преобразования ПСКЗ при минимальном и максимальном входном сигнале, выравнивания характеристик для положительной и отрицательной полуволны входного напряжения.

Буферный усилитель всех микросхем построен по одной упрощенной схеме, приведенной на рис. 7, за исключением ИС AD637, в которой для уменьшения входного тока смещения буферного усилителя введена схема компенсации входного тока. Однако опробование показало, что применение буферного усилителя целесообразно только на выходе ПСКЗ, например, для дополнительной фильтрации. Использование его для увеличения входного сопротивления по выводу V_{IN} приводит к значительному увеличению погрешности преобразования высокочастотного сигнала и сигнала сложной формы из-за недостаточного быстродействия буферного усилителя, полоса пропускания которого по уровню -3 дБ составляет всего 1,0 МГц, а скорость нарастания выходного напряжения — 5 В/мкс. Для некоторых применений с биполярным напряжением питания недостаточна нагрузочная способность буферного усилителя для втекающего тока, составляющая всего 130 мкА.

Особенности электрической схемы и электрических параметров прецизионного ПСКЗ

Рассмотрим более подробно работу наиболее точного преобразователя — AD637. Он относится к классу преобразователей с экспоненциально-логарифмической обратной связью, которые применяют следующий алгоритм обработки сигнала [1]:

$$X_{RMS} = \frac{1}{T} \int_{0}^{T} \exp[2\log x(t) - \log X_{RMS}] dt \quad (23)$$

Типовая схема реализации этого способа показана на рис. 8, на котором ФМ — формирователь модуля, предназначенный для исключения изменения направления коллекторного тока Q1, так как в активном режиме работы п-р-п-транзистора ток может только втекать в коллекторный вывод. Вместо ФМ можно применить источник постоянного вытекающего тока I_{REF} соединенный с коллектором Q1. Величина I_{REF} выбирается так, чтобы коллекторный ток Q1 $I_{Cl}{=}I_{REF}{+}I_{R1}$ не изменял своего направления при максимально допустимом отрицательном входном сигнале. Однако при этом к эмиттеру Q3 необходимо подключить источник втекающего тока с величиной, точно равной $I_{\it REF}$. К сожалению, даже при интегральном исполнении невозможно получить полностью идентичные источники втекающего и вытекающего тока, и их разность будет влиять на погрешность преобразования СКЗ. Если постоянная времени усредняющего

фильтра $\tau_{AV} \approx C_1 \times R_2$ намного больше перио-

да Т изменения входного напряжения $v_{IN}(t)$, то выходное напряжение ПСКЗ будет соответствовать алгоритму соотношения (23), а именно:

$$V_{OUT} \sim \frac{1}{T} \int_{0}^{T} \exp\left(2Ln \frac{|v_{IN}(t)|}{R_{1}I_{ES}} - Ln \frac{V_{OUT}}{R_{3}I_{ES}}\right) dt$$
(24)

Постоянная времени τ_{AV} определяет ошибку усреднения (averaging error) — отклонение выходного напряжения $V_{\it OUT}$ от идеального значения, включающее частотно зависящее напряжение смещения Δ_{TRDC} на выходе ПСКЗ (DC error) и пульсации выходного напряжения с удвоенной частотой входного сигнала (doublefrequency ripple) и амплитудой Δ_{TRAO} как показано на рис. 9. Чем С₁ больше, тем меньше ошибка усреднения, но при этом, с одной стороны, значительно увеличивается номинал и размеры конденсатора, а с другой стороны растет время установления выходного напряжения, которое прямо пропорционально т_{АV}. Если резистор R₂ выбрать очень большим или даже удалить, то любой постоянный ток (входной ток смещения ОУ, коллекторный ток Q3 при отсутствии входного сигнала) будет заряжать конденсатор С₁, что при отсутствии входного сигнала приведет к сдвигу выходного напряжения ПСКЗ к напряжению питания и уменьшению динамического диапазона.

На упрощенной схеме AD637 (рис. 5) формирователь модуля и преобразователь «напряжение — ток» реализован на ОУ А1, А2 и диодах, фильтрующий конденсатор является внешним *C*_{AV} и усилитель А3 также подключается при внешнем соединении выводов (рис. 6).

При другом соединении выводов ИС можно получить как качественно, так и количественно иные характеристики:

- Подавая напряжение на вывод OUTPUT_ OFFSET, можно изменять выходное напряжение ПСКЗ по выводу RMS_OUT.
- Включение резистора между RMS_OUT и DEN_INPUT изменяет коэффициент преобразования ПСКЗ.
- Ошибку усреднения можно описать частотно зависимым напряжением смещения Δ_{TRDC} и амплитудой пульсаций Δ_{TRAC} которые для AD637 составят (в процентах):

$$\Delta_{TRDC} = \frac{1}{0,16 + 4 \times 10^{-3} f^2 C_{AV}^2}$$
(25)
$$\Delta_{TRAC} = \frac{1}{3,15 \times 10^{-3} f C_{AV}}$$
(26)

где f — частота входного сигнала в Гц, $C_{\!A\!V}$ — величина фильтрующего конденсатора в мкФ.

Значительно уменьшить амплитуду пульсаций можно последующей фильтрацией выходного сигнала, при помощи как имеющегося в ИС буфера, так и дополнительных внешних фильтров. К сожалению, фильтрация выходного сигнала не уменьшает Δ_{TRDC} ее можно уменьшить только увеличением C_{AV} .

- Если вывод RMS_OUT соединен с DEN_IN-PUT, а конденсатор C_{AV} отсутствует (точнее C_{AV} малой величины ≈5 пФ для обеспечения устойчивой работы А4), то в этом случае происходит вычисление абсолютной величины входного сигнала V_{OUT} = |v_{IN}(t)|.
- Если конденсатор С_{AV} подключен, а DEN_IN-PUT соединен с источником опорного напряжения V_{REF}, то определяется средний квадрат

$$V_{OUT} = \frac{1}{V_{REF}T} \int_{0}^{T} v_{IN}^{2}(t) dt.$$

Регулировка выходного напряжения и коэффициента преобразования применяется обычно в AD637 для минимизации погрешности преобразования в начале и конце диапазона допустимого входного напряжения. В этом случае на вход V_{IN} подают минимально допустимое напряжение и устанавливают выходное напряжение на RMS_OUT с требуемым значением V_{ОUT}, изменяя потенциал на выводе OUTPUT_OFFSET. Аналогично для максимально допустимого входного напряжения изменением резистора между RMS_OUT и DEN_INPUT получают требуемую величину V_{ОИТ}. Оставшаяся после такой настройки погрешность будет определяться только неподстраиваемым напряжением смещения ФМ и неустранимыми нелинейностями транзисторов.

Операционные усилители A1 — А3, применяемые в микросхеме AD637, показаны на рис. 10. Они похожи на LM124 [10]. Отличие заключается в выходном каскаде Q10, Q11 без эмиттерных повторителей и транзисторе Q12, уменьшающем потребление тока ОУ при высоком потенциале в узле Vb1. Токовое смещение дифференциального каскада Q1, Q2 осуществляется от источника тока, соединенного с узлом 1. Сам источник тока расположен в блоке смещения ИС (рис. 11). На рисунках приведены потенциалы в основных узлах и токи через цепи, которые получены при схемотехническом моделировании для типового технологического процесса изготовления ИС с напряжением питания ±15 В, коэффициенты площади транзисторов AREA приведены только в том случае, если они отличаются от елиницы. Пля стабилизации источников тока в широком диапазоне напряжения питания в блоке смещения использованы «токовые зеркала» на комплементарных транзисторах Q26, Q27 и Q28 — Q31, причем вход первого соединен с выходом второго и наоборот. Такое включение позволяет получить независящую от напряжения питания малую величину тока ≈50 мкА без больших резисторов [11]. Для запуска блока смещения при включении напряжения питания применена цепь R₂₉, R₃₀, C_{START}. Удачным схемотехническим решением является включение резистора R_5 (рис. 10), который позволяет компенсировать напряжение смещения операционного усилителя, возникающее из-за схемотехнической несимметрии.

Буферный усилитель AD637 (рис. 12) представляет собой дифференциальный каскад на p-n-p-транзисторах Q2, Q10, «токовом зеркале» Q1, Q9 и активной нагрузке на источниках тока I1, I4. Выходной каскад этого усилителя образован эмиттерным повторителем Q11, Q12, I5, работающим в классе А. Для уменьшения входного тока смещения по каждому из входов применены цепи компенсации входного тока Q3-Q5/Q6-Q8. Транзистор Q5 (p-n-p) задает базовый ток $I_{B5}=I_2/\beta$, который «токовым зеркалом» Q4, Q3 инвертируется по направлению и с коэффициентом передачи «токового зеркала» КІ поступает в базу входного транзистора Q2. Ток смещения по входу 1 *I*_{BIAS1} при этом составит:

$$I_{BLAS1} = I_{B2} - I_{C3} \approx \frac{I_1}{1+\beta} - K_I \frac{I_2}{1+\beta}$$
(27)

Если источники тока I1–I4 одинаковые и $K_I \approx 1$, что достигается при интегральном исполнении и $\beta >>1$ n-p-n транзисторов, то $I_{BIAS} \approx 0$.

Как видно из (25) и (26), погрешность усреднения проявляется в основном при преобразовании низкочастотного сигнала. Погрешность преобразования на высокой частоте определяется другими факторами: амплитудо-частотной характеристикой (АЧХ) формирователя модуля и логарифматора DA1, Q1, Q2 (рис. 8). Для минимизации погрешности преобразования формирователь модуля и логарифматор должны иметь частоту среза в области высоких частот f_{-3dBH} значительно больше, чем верхняя частота, на которой допустима дополнительная 1-процентная погрешность $f_{-1\%H}$:

$$f_{-3dBH} \ge \frac{10}{\sqrt{2}} f_{-1\%H}$$
(28)

Кроме того, ФМ для передачи сигнала большой амплитуды должен обладать высокой скоростью нарастания выходного напряжения ρ . При преобразовании сигнала с большим коэффициентом амплитуды необходимо учитывать, что амплитудное значение сигнала может перегружать ФМ и вызывать искажения, увеличивающие погрешность, поэтому с увеличением уровня входного сигнала предельный коэффициент амплитуды уменьшается [2].

Требуемые частотные свойства ОУ можно достичь правильным выбором коллекторных токов транзисторов Q1, Q2, Q6 и емкости конденсатора C_{FBI} (рис. 10), поэтому ФМ не является критичным узлом и АЧХ ПСКЗ определяет логарифматор DA1, Q1, Q2 (рис. 8).

Если входной ток логарифматора (коллекторный ток Q1) имеет постоянную составляющую I_{DC} и переменную составляющую i_{AC} небольшой величины, не влияющей на рабочую точку Q1, то частота среза в области высоких частот логарифматора составит

1

$$\Gamma_{-3dBH} = \frac{I_{DC}}{2\pi\varphi_T \left(C_{JBE} + \tau_F \frac{I_{DC}}{\varphi_T} \right)}$$
(29)

где C_{IBE} — барьерная емкость эмиттерного перехода в рабочем режиме, τ_F — время пролета через базу при нормальном включении.

Из (29) вытекает, что при малых входных токах логарифматора

$$f_{-3dBH} = \frac{I_{DC}}{2\pi\varphi_T C_{JBE}}$$
 при $I_{DC} << \frac{\varphi_T C_{JBE}}{\tau_F}$ (30)

Логарифматор в ПСКЗ чаще всего работает при малом входном токе, поэтому полоса пропускания и частота дополнительной 1-процентной погрешности экспоненциально-логарифмического ПСКЗ будут прямопропорциональны уровню входного сигнала.

К сожалению, частота $f_{-1\%H}$ ПСКЗ еще меньше, чем определяемая выражением (28), так как на погрешность при малых уровнях входного сигнала влияет падение β при малых кол-

лекторных токах. Например, для AD637 коллекторный ток логарифмирующего транзистора составляет \approx 0,9 мкА при минимальном входном сигнале $V_{IN} = 20$ мВ и \approx 80 мкА при максимальном сигнале $V_{IN} = 2$ В.

Другим недостатком экспоненциально-логарифмических ПСКЗ является то, что при больших коэффициентах амплитуды через транзисторы Q1 — Q3 протекают большие импульсные токи, и из-за падения напряжения на объемных сопротивлениях этих транзисторов возрастает погрешность преобразования сигнала сложной формы.

На рис. 13 показана схема уменьшения погрешности преобразования сигналов с большим коэффициентом амплитуды, в которой параллельно эмиттерным переходам транзисторов Q2 — Q4 включены эмиттерные переходы транзисторов меньшей площади Q5 — Q7, коллекторы которых через небольшие резисторы R_4 и R_5 заземлены [12].

Тщательный анализ этой схемы выявил, что:

- Наибольший вклад в аддитивную погрешность ПСКЗ вносит разброс транзисторов Q1 Q4 по прямому падению напряжения на эмиттерном переходе ΔV_{BE}, высокая идентичность β(Δβ/β > 0,98) необходима только при малом его значении (β<50).
- мультипликативная погрешность, возникающая из-за падения напряжения на объемных сопротивлениях транзисторов и пропорциональная коллекторному току Q1 Q4, компенсируется при выборе резисторов R₄ и R₅ в соответствии с условием:

$$R_{5} = 2R_{4} = 2Q \frac{R_{E} + R_{B}(1 - \alpha)}{\alpha} \qquad (31)$$

где R_B, R_E — объемное сопротивление базовой и эмиттерной области соответственно,

$$\alpha = \frac{\beta}{1+\beta} -$$

статический коэффициент передачи тока в схеме с общей базой, Q — отношение площади эмиттера топологически одинаковых транзисторов Q1 — Q4 к площади эмиттера топологически одинаковых транзисторов Q5 — Q7.

Выполненный анализ ПСКЗ был применен при разработке модифицированного варианта микросхемы — функционального аналога AD637 (рис. 14). На рис. 14 цифрами обозначены узлы, соединенные между собой внутри микросхемы, а узлы, соединенные с выводами ИС, обозначены PIN N.

Основные положения, реализованные при разработке:

Уменьшение аддитивной погрешности путем конструктивно-топологической оптимизации транзисторов квадратора-делителя, направленной на уменьшения разброса прямого падения напряжения на эмиттерном переходе ΔV_{BE} [13–14].

- Уменьшение мультипликативной погрешности за счет выбора номиналов резисторов *R_{EXT2}* и *R_{EXT3}* в соответствии с (31).
- Выбор рабочего режима и внутренних корректирующих конденсаторов для обеспечения требуемой полосы пропускания.

В заключение отметим, что частотные характеристики рассмотренных микросхем не могут конкурировать с ПСКЗ на основе аналоговых умножителей или термоэлектрических преобразователей, поэтому экспоненциально-логарифмические ПСКЗ можно рассматривать как относительно дешевые и высокоточные приборы для сигналов с частотой до 1 МГц.

Литература

- Волгин Л. И. Измерительные преобразователи переменного напряжения в постоянное. М.: Советское радио. 1977.
- Грязнов М. И., Гуревич М. Л., Рябинин Ю. А. Измерение параметров импульсов. М.: Радио и связь. 1991.
- Мейзда Ф. Электронные измерительные приборы и методы измерений: Пер. с англ. М.: Мир. 1990.
- Раух В.-Э. Основы точного измерения сигналов переменного тока // Электроника. № 6. 1976.
- Кацман Ф. Л. О правильном выборе и использовании вольтметра для измерения действующих значений // Электроника. № 6. 1976.
- Попов В. С., Желбаков И. Н. Измерение среднеквадратического значения напряжения. М.: Энергоатомиздат. 1987.
- Зайцев Ю. В., Громов В. С., Григораш Т. С. Полупроводниковые термоэлектрические преобразователи. М.: Радио и связь. 1985.
- Гуревич М. Л. Разработка методов построения и создание точной аппаратуры контроля уровня напряжений широкополосных сигналов. Диссертация в виде научного доклада на соискание ученой степени доктора технических наук. Нижний Новгород. 2003.
 www.analog.com
- Соклоф С. Аналоговые интегральные схемы: Пер. с англ. М.: Мир. 1988.
- Дворников О. В. Схемотехника биполярных источников тока / НЦФЧВЭ. Деп. в БелИСА 08.05.01. № Д200137. Минск: 2001.
- Дворников О. В., Муравьев Б. Д. Преобразователь среднеквадратического значения переменного напряжения в постоянное. А.с. 1709229 (СССР). Заявл. 23.01.90. Опубл. 30.01.92.
- Дворников О. В., Любый Е. М. Полупроводниковый прибор. А.с. 1431621 (СССР). Заявл. 18.06.86.
- Дворников О. В., Шепурев С. Ю., Судник П. И., Подковщиков Н. Н. Интегральная микросхема. A.c.1561755 (СССР). Заявл. 25.01.88.